翻訳と辞書
Words near each other
・ Ideal Jawa
・ Ideal lattice cryptography
・ Ideal Lofts
・ Ideal machine
・ Ideal managerial climate
・ Ideal Maniac
・ Ideal mate
・ Ideal Mini School
・ IDEAL model
・ Ideal money
・ Ideal norm
・ Ideal number
・ Ideal observer analysis
・ Ideal observer theory
・ Ideal point
Ideal quotient
・ Ideal ring bundle
・ Ideal SC
・ IDEAL Scholars Fund
・ Ideal School and College
・ Ideal sheaf
・ Ideal solution
・ Ideal speech situation
・ Ideal Standard
・ Ideal surface
・ Ideal tasks
・ Ideal theory
・ Ideal town
・ Ideal Township, Crow Wing County, Minnesota
・ Ideal Toy Company


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ideal quotient : ウィキペディア英語版
Ideal quotient

In abstract algebra, if ''I'' and ''J'' are ideals of a commutative ring ''R'', their ideal quotient (''I'' : ''J'') is the set
:(I : J) = \
Then (''I'' : ''J'') is itself an ideal in ''R''. The ideal quotient is viewed as a quotient because IJ \subset K if and only if I \subset K : J. The ideal quotient is useful for calculating primary decompositions. It also arises in the description of the set difference in algebraic geometry (see below).
(''I'' : ''J'') is sometimes referred to as a colon ideal because of the notation. In the context of fractional ideals, there is a related notion of the inverse of a fractional ideal.
==Properties==
The ideal quotient satisfies the following properties:
*(I :J)=\mathrm_R((J+I)/I) as R-modules, where \mathrm_R(M) denotes the annihilator of M as an R-module.
*J \subset I \Rightarrow I : J = R
*I : R = I
*R : I = R
*I : (J + K) = (I : J) \cap (I : K)
*I : (r) = \frac(I \cap (r)) (as long as ''R'' is an integral domain)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ideal quotient」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.